Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 920
Filter
1.
Front Immunol ; 15: 1352469, 2024.
Article in English | MEDLINE | ID: mdl-38711504

ABSTRACT

Vibriosis, caused by Vibrio, seriously affects the health of fish, shellfish, and shrimps, causing large economic losses. Teleosts are represent the first bony vertebrates with both innate and adaptive immune responses against pathogens. Aquatic animals encounter hydraulic pressure and more pathogens, compared to terrestrial animals. The skin is the first line of defense in fish, constituting the skin-associated lymphoid tissue (SALT), which belongs to the main mucosa-associated lymphoid tissues (MALT). However, little is known about the function of immunity related proteins in fish. Therefore, this study used iTRAQ (isobaric tags for relative and absolute quantitation) to compare the skin proteome between the resistant and susceptible families of Cynoglossus semilaevis. The protein integrin beta-2, the alpha-enolase isoform X1, subunit B of V-type proton ATPase, eukaryotic translation initiation factor 6, and ubiquitin-like protein ISG15, were highly expressed in the resistant family. The 16S sequencing of the skin tissues of the resistant and susceptible families showed significant differences in the microbial communities of the two families. The protein-microbial interaction identified ten proteins associated with skin microbes, including immunoglobulin heavy chain gene (IGH), B-cell lymphoma/leukemia 10 (BCL10) and pre-B-cell leukemia transcription factor 1 isoform X2 (PBX2). This study highlights the interaction between skin proteins and the microbial compositions of C. semilaevis and provides new insights into understanding aquaculture breeding research.


Subject(s)
Disease Resistance , Fish Diseases , Fish Proteins , Flatfishes , Microbiota , Skin , Vibrio Infections , Vibrio , Animals , Skin/immunology , Skin/microbiology , Skin/metabolism , Fish Diseases/immunology , Fish Diseases/microbiology , Disease Resistance/immunology , Vibrio Infections/immunology , Vibrio Infections/veterinary , Flatfishes/immunology , Flatfishes/microbiology , Microbiota/immunology , Vibrio/immunology , Fish Proteins/genetics , Fish Proteins/metabolism , Fish Proteins/immunology , Proteome , Proteomics/methods
2.
Front Immunol ; 15: 1380089, 2024.
Article in English | MEDLINE | ID: mdl-38650950

ABSTRACT

Introduction: The culture of Pacific oysters (Crassostrea gigas) is of significant socio-economic importance in the U.S. Pacific Northwest and other temperate regions worldwide, with disease outbreaks acting as significant bottlenecks to the successful production of healthy seed larvae. Therefore, the current study aims to describe the mechanisms of a probiotic combination in improving the survival of C. gigas larvae. Specifically, we investigate changes in C. gigas larval gene expression in response to V. coralliilyticus infection with or without a pre-treatment of a novel probiotic combination. Methods: Treatment groups consisted of replicates of Pacific oyster larvae exposed to a) a combination of four probiotic bacteria at a total concentration of 3.0 x 105 CFU/mL at 18 hours post-fertilization (hpf), b) pathogenic V. coralliilyticus RE22 at a concentration of 6.0 x 103 CFU/mL at 48 hpf, and c) the probiotic combination at 18 hpf and V. coralliilyticus RE22 at 48 hpf. RNA was extracted from washed larvae after 72 hpf, and transcriptome sequencing was used to identify significant differentially expressed genes (DEGs) within each treatment. Results: Larvae challenged with V. coralliilyticus showed enhanced expression of genes responsible for inhibiting immune signaling (i.e., TNFAIP3, PSMD10) and inducing apoptosis (i.e., CDIP53). However, when pre-treated with the probiotic combination, these genes were no longer differentially expressed relative to untreated control larvae. Additionally, pre-treatment with the probiotic combination increased expression of immune signaling proteins and immune effectors (i.e., IL-17, MyD88). Apparent immunomodulation in response to probiotic treatment corresponds to an increase in the survival of C. gigas larvae infected with V. coralliilyticus by up to 82%. Discussion: These results indicate that infection with V. coralliilyticus can suppress the larval immune response while also prompting cell death. Furthermore, the results suggest that the probiotic combination treatment negates the deleterious effects of V. coralliilyticus on larval gene expression while stimulating the expression of genes involved in infection defense mechanisms.


Subject(s)
Crassostrea , Larva , Probiotics , Vibrio , Animals , Larva/immunology , Larva/microbiology , Crassostrea/immunology , Crassostrea/microbiology , Vibrio Infections/immunology , Vibrio Infections/veterinary , Transcriptome , Immunomodulation
3.
Dev Comp Immunol ; 156: 105175, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38574831

ABSTRACT

Peroxiredoxin-1 (Prdx1) is a thiol-specific antioxidant enzyme that detoxifies reactive oxygen species (ROS) and regulates the redox status of cells. In this study, the Prdx1 cDNA sequence was isolated from the pre-established Amphiprion clarkii (A. clarkii) (AcPrdx1) transcriptome database and characterized structurally and functionally. The AcPrdx1 coding sequence comprises 597 bp and encodes 198 amino acids with a molecular weight of 22.1 kDa and a predicted theoretical isoelectric point of 6.3. AcPrdx1 is localized and functionally available in the cytoplasm and nucleus of cells. The TXN domain of AcPrdx1 comprises two peroxiredoxin signature VCP motifs, which contain catalytic peroxidatic (Cp-C52) and resolving cysteine (CR-C173) residues. The constructed phylogenetic tree and sequence alignment revealed that AcPrdx1 is evolutionarily conserved, and its most closely related counterpart is Amphiprion ocellaris. Under normal physiological conditions, AcPrdx1 was ubiquitously detected in all tissues examined, with the most robust expression in the spleen. Furthermore, AcPrdx1 transcripts were significantly upregulated in the spleen, head kidney, and blood after immune stimulation by polyinosinic:polycytidylic acid (poly (I:C)), lipopolysaccharide (LPS), and Vibrio harveyi injection. Recombinant AcPrdx1 (rAcPrdx1) demonstrated antioxidant and DNA protective properties in a concentration-dependent manner, as evidenced by insulin disulfide reduction, peroxidase activity, and metal-catalyzed oxidation (MCO) assays, whereas cells transfected with pcDNA3.1(+)/AcPrdx1 showed significant cytoprotective function under oxidative and nitrosative stress. Overexpression of AcPrdx1 in fathead minnow (FHM) cells led to a lower viral copy number following viral hemorrhagic septicemia virus (VHSV) infection, along with upregulation of several antiviral genes. Collectively, this study provides insights into the function of AcPrdx1 in defense against oxidative stressors and its role in the immune response against pathogenic infections in A. clarkii.


Subject(s)
Fish Proteins , Peroxiredoxins , Phylogeny , Vibrio Infections , Animals , Peroxiredoxins/metabolism , Peroxiredoxins/genetics , Peroxiredoxins/immunology , Fish Proteins/genetics , Fish Proteins/metabolism , Fish Proteins/immunology , Vibrio Infections/immunology , Poly I-C/immunology , Fish Diseases/immunology , Immunity, Innate , Vibrio/immunology , Vibrio/physiology , Cloning, Molecular , Amino Acid Sequence , Perciformes/immunology , Lipopolysaccharides/immunology , Sequence Alignment , Reactive Oxygen Species/metabolism
4.
Dev Comp Immunol ; 156: 105177, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38593892

ABSTRACT

Horizontal gene transfer (HGT) is an important evolutionary force in the formation of prokaryotic and eukaryotic genomes. In recent years, many HGT genes horizontally transferred from prokaryotes to eukaryotes have been reported, and most of them are present in arthropods. The Pacific white shrimp Litopenaeus vannamei, an important economic species of arthropod, has close relationships with bacteria, providing a platform for horizontal gene transfer (HGT). In this study, we analyzed bacteria-derived HGT based on a high-quality genome of L. vannamei via a homology search and phylogenetic analysis, and six HGT genes were identified. Among these six horizontally transferred genes, we found one gene (LOC113799989) that contains a bacterial chondroitinase AC structural domain and encodes an unknown glycosaminoglycan (GAG) lyase in L. vannamei. The real-time quantitative PCR results showed that the mRNA expression level of LOC113799989 was highest in the hepatopancreas and heart, and after stimulation by Vibrio parahaemolyticus, its mRNA expression level was rapidly up-regulated within 12 h. Furthermore, after injecting si-RNA and stimulation by V. parahaemolyticus, we found that the experimental group had a higher cumulative mortality rate in 48 h than the control group, indicating that the bacteria-derived GAG lyase can reduce the mortality of shrimp with respect to infection by V. parahaemolyticus and might be related to the resistance of shrimp to bacterial diseases. Our findings contribute to the study of the function of GAGs and provide new insights into GAG-related microbial pathogenesis and host defense mechanisms in arthropods.


Subject(s)
Gene Transfer, Horizontal , Penaeidae , Phylogeny , Vibrio parahaemolyticus , Animals , Penaeidae/immunology , Penaeidae/microbiology , Penaeidae/genetics , Vibrio parahaemolyticus/physiology , Arthropod Proteins/genetics , Arthropod Proteins/metabolism , Hepatopancreas/microbiology , Hepatopancreas/immunology , Hepatopancreas/metabolism , Bacteria , Immunity, Innate/genetics , Polysaccharide-Lyases/genetics , Polysaccharide-Lyases/metabolism , Vibrio Infections/immunology
5.
Dev Comp Immunol ; 156: 105168, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38522715

ABSTRACT

Prohibitin2 (PHB2) is recently identified as a novel inner membrane mitophagy receptor to mediate mitophagy. In the present study, the function of CgPHB2 in mediating mitophagy in response to Vibrio splendidus stimulation was investigated in Crassostrea gigas. CgPHB2 protein was mainly distributed in the cytoplasm of three subpopulations of haemocytes. After V. splendidus stimulation, the expressions of CgPHB2 mRNA in haemocytes were up-regulated significantly at 6, 12 and 24 h, and the abundance of CgPHB2 protein was also enhanced at 12-24 h compared to control group. Furthermore, the green signals of CgPHB2 were colocalized respectively with the red signals of mitochondria and CgLC3 in the haemocytes at 12 h after V. splendidus stimulation, and the co-localization value of CgPHB2 and mtphagy Dye was significantly increased. The direct interaction between CgPHB2 and CgLC3 was simulated by molecular docking. In PHB2-inhibitor Fluorizoline-treated oysters, the mRNA expressions of mitophagy-related genes and the ratio of mitophagy were significantly decreased in haemocytes of oysters after V. splendidus stimulation. All the results collectively suggested that CgPHB2 participated in mediating the haemocyte mitophagy in the antibacterial immune response of oysters.


Subject(s)
Crassostrea , Hemocytes , Mitophagy , Prohibitins , Repressor Proteins , Vibrio , Animals , Vibrio/immunology , Vibrio/physiology , Hemocytes/immunology , Hemocytes/metabolism , Crassostrea/immunology , Crassostrea/microbiology , Mitophagy/immunology , Repressor Proteins/metabolism , Repressor Proteins/genetics , Vibrio Infections/immunology , Mitochondria/metabolism , Mitochondria/immunology , Molecular Docking Simulation , Immunity, Innate
6.
Dev Comp Immunol ; 156: 105174, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38548001

ABSTRACT

The exosomal miRNA plays a crucial role in the intercellular communication response to environmental stress and pathogenic stimulation. In the present study, the expression of exosomal miRNAs in the Pacific oyster Crassostrea gigas after high-temperature stress or Vibrio splendidus stimulation was investigated through high-throughput sequencing. The exosomes were identified to be teardrop-like vesicles with the average size of 81.7 nm by transmission electron microscopy. There were 66 known miRNAs and 33 novel miRNAs identified, of which 10 miRNAs were differentially expressed after both high-temperature stress and Vibrio stimulation compared to the control group. A total of 1868 genes were predicted as the putative targets of miRNAs, of which threonine aspartase 1-like was targeted by the highest number of related miRNAs. The robustness and reliability of miRNA expression from the sRNA sequencing data were verified by employing eight miRNAs for qPCR. GO and KEGG clustering analyses revealed that apoptosis was significantly enriched by the target genes of differentially expressed exosomal miRNAs after high-temperature stress, and autophagy and cytokine activity were significantly enriched after Vibrio stimulation. Energy metabolism was found to be significantly shared in the target gene enrichments after both high-temperature stress and Vibrio stimulation. These findings would improve our understanding of the regulatory mechanisms of exosomal miRNAs in C. gigas after high-temperature stress or Vibrio stimulation.


Subject(s)
Crassostrea , Exosomes , MicroRNAs , Vibrio , Animals , Vibrio/physiology , MicroRNAs/genetics , MicroRNAs/metabolism , Exosomes/metabolism , Exosomes/genetics , Crassostrea/immunology , Crassostrea/microbiology , Crassostrea/genetics , Stress, Physiological/genetics , Apoptosis , Autophagy/genetics , Vibrio Infections/immunology , High-Throughput Nucleotide Sequencing , Gene Expression Profiling , Energy Metabolism/genetics , Gene Expression Regulation , Hot Temperature , Heat-Shock Response/genetics
7.
Dev Comp Immunol ; 156: 105171, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38537729

ABSTRACT

Trace amine-associated receptors (TAARs) are a class of G protein-coupled receptors, playing an immunomodulatory function in the neuroinflammatory responses. In the present study, a TAAR homologue with a 7tm_classA_rhodopsin-like domain (designated as CgTAAR1L) was identified in oyster Crassostrea gigas. The abundant CgTAAR1L transcripts were detected in visceral ganglia and haemocytes compared to other tissues, which were 55.35-fold and 32.95-fold (p < 0.01) of those in adductor muscle, respectively. The mRNA expression level of CgTAAR1L in haemocytes significantly increased and reached the peak level at 3 h after LPS or Poly (I:C) stimulation, which was 4.55-fold and 12.35-fold of that in control group, respectively (p < 0.01). After the expression of CgTAAR1L was inhibited by the injection of its targeted siRNA, the mRNA expression levels of interleukin17s (CgIL17-1, CgIL17-5 and CgIL17-6), and defensin (Cgdefh1) significantly decreased at 3 h after LPS stimulation, which was 0.51-fold (p < 0.001), 0.39-fold (p < 0.01), 0.48-fold (p < 0.05) and 0.41-fold (p < 0.05) of that in the control group, respectively. The nuclear translocation of Cgp65 protein was suppressed in the CgTAAR1L-RNAi oysters. Furthermore, the number of Vibrio splendidus in the haemolymph of CgTAAR1L-RNAi oysters significantly increased (4.11-fold, p < 0.001) compared with that in the control group. In contrast, there was no significant difference in phagocytic rate of haemocytes to V. splendidus in the CgTAAR1L-RNAi oysters. These results indicated that CgTAAR1L played an important role in the immune defense against bacterial infection by inducing the expressions of interleukin and defensin.


Subject(s)
Crassostrea , Defensins , Hemocytes , Lipopolysaccharides , Receptors, G-Protein-Coupled , Vibrio , Animals , Crassostrea/immunology , Hemocytes/immunology , Hemocytes/metabolism , Vibrio/immunology , Vibrio/physiology , Lipopolysaccharides/immunology , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Defensins/genetics , Defensins/metabolism , Immunity, Innate , Interleukin-17/metabolism , Interleukin-17/genetics , Interleukin-17/immunology , Poly I-C/immunology , RNA, Small Interfering/genetics , Vibrio Infections/immunology , Trace Amine-Associated Receptors
8.
Mar Biotechnol (NY) ; 26(2): 306-323, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38367180

ABSTRACT

Vibrio harveyi, a recently discovered pathogenic bacterium isolated from American eels (Anguilla rostrata), poses uncertainties regarding its pathogenesis in American eel and the molecular mechanisms underlying host defense against V. harveyi infection. This study aimed to determine the LD50 of V. harveyi in American eel and assess the bacterial load in the liver, spleen, and kidney post-infection with the LD50 dose. The results showed that the LD50 of V. harveyi via intraperitoneal injection in American eels over a 14d period was determined to be 1.24 × 103 cfu/g body weight (6.2 × 104 cfu/fish). The peak bacterial load occurred at 36 h post-infection (hpi) in all three organs examined. Histopathology analysis revealed hepatic vein congestion and thrombi, tubular vacuolar degeneration, and splenic bleeding. Moreover, quantitative reverse transcription polymerase chain reaction (qRT-PCR) results indicated significant up or downregulation of 18 host immune- or anti-infection-related genes post 12 to 60 hpi following the infection. Additionally, RNA sequencing (RNA-seq) unveiled 7 hub differentially expressed genes (DEGs) and 11 encoded proteins play crucial roles in the anti-V. harveyi response in American eels. This study firstly represents the comprehensive report on the pathogenicity of V. harveyi to American eels and RNA-seq of host's response to V. harveyi infection. These findings provide valuable insights into V. harveyi pathogenesis and the strategies employed by the host's immune system at the transcriptomic level to combat V. harveyi infection.


Subject(s)
Anguilla , Fish Diseases , Gene Expression Profiling , Liver , Vibrio Infections , Vibrio , Animals , Vibrio/pathogenicity , Anguilla/microbiology , Anguilla/genetics , Fish Diseases/microbiology , Fish Diseases/immunology , Vibrio Infections/veterinary , Vibrio Infections/microbiology , Vibrio Infections/immunology , Liver/microbiology , Liver/pathology , Spleen/microbiology , Spleen/pathology , Transcriptome , Kidney/microbiology , Kidney/pathology , Lethal Dose 50 , Bacterial Load
9.
Fish Shellfish Immunol ; 140: 108903, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37423402

ABSTRACT

The common Chinese cuttlefish (Sepiella japonica) is an essential species for stock enhancement by releasing juveniles in the East China Sea now. S. japonica is susceptible to bacterial diseases during parental breeding. In vertebrates, Interleukin-17 (IL-17) cytokine family plays critical roles in both acute and chronic inflammatory responses. In Cephalopoda, few studies have been reported on IL-17 genes so far. In this study, twenty IL-17 transcripts obtained from S. japonica were divided into eight groups (designated as Sj_IL-17-1 to Sj_IL-17-8). Multiple alignment analysis showed that IL-17s in S. japonica and human both contained four ß-folds (ß1-ß4), except for Sj_IL-17-6 with two ß-folds (ß1 and ß2), and the third and fourth ß-folds of Sj_IL-17-5 and Sj_IL-17-8 were longer than those of other Sj_IL-17. Protein structure and conserved motifs analysis demonstrated that Sj_IL-17-5 and Sj_IL-17-6 displayed different protein structure with respect to other six Sj_IL-17 proteins. The homology and phylogenetic analysis of amino acids showed that Sj_IL-17-5, Sj_IL-17-6 and Sj_IL-17-8 had low homology with the other five Sj_IL-17s. Eight Sj_IL-17 mRNAs were ubiquitously expressed in ten examined tissues, with dominant expression in the hemolymph. qRT-PCR data showed that the mRNA expression levels of Sj_IL-17-2, Sj_IL-17-3, Sj_IL-17-6, and Sj_IL-17-8 were significantly up-regulated in infected cuttlefishes, and Sj_IL-17-2, Sj_IL-17-6, Sj_IL-17-7, and Sj_IL-17-8 mRNAs Awere significantly up-regulated after bath infection of Vibrio harveyi, suggesting that certain Sj_IL-17s were involved in the immune response of S. japonica against V. harveyi infection. These results implied that Sj_IL-17s were likely to have distinct functional diversification. This study aims to understand the involvement of Sj_IL-17 genes in immune responses of cuttlefish against bacterial infections.


Subject(s)
Decapodiformes , Interleukin-17 , Vibrio Infections , Vibrio , Animals , Humans , Decapodiformes/genetics , Decapodiformes/immunology , Decapodiformes/microbiology , Interleukin-17/chemistry , Interleukin-17/genetics , Interleukin-17/immunology , Phylogeny , Vibrio Infections/immunology , Vibrio Infections/veterinary , China
10.
Int J Biol Macromol ; 247: 125734, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37423436

ABSTRACT

Molecular dissection of disease resistance against Vibrio harveyi infection in yellow drum at the genome-wide level uncovered a C-type lectin-like receptor cluster of differentiation CD302 (named as YdCD302) in our previous study. Here, the gene expression pattern of YdCD302 and its function in mediating the defense response to V. harveyi attack were investigated. Gene expression analysis demonstrated that YdCD302 was ubiquitously distributed in various tissues with the highest transcript abundance in liver. The YdCD302 protein exhibited agglutination and antibacterial activity against V. harveyi cells. Binding assay indicated that YdCD302 can physically interact with V. harveyi cells in a Ca2+-independent manner, and the interaction can activate reactive oxygen species (ROS) production in the bacterial cells to induce RecA/LexA-mediated cell death. After infection with V. harveyi, the expression of YdCD302 can be up-regulated significantly in the main immune organs of yellow drum and potentially further trigger the cytokines involved innate immunity. These findings provide insight into the genetic basis of the disease resistance trait in yellow drum and shed light on the functioning of the CD302 C-type lectin-like receptor in host-pathogen interactions. The molecular and functional characterization of YdCD302 is a significant step towards a better understanding of disease resistance mechanisms and the development of new strategies for disease control.


Subject(s)
Fish Diseases , Fish Proteins , Lectins, C-Type , Perciformes , Vibrio Infections , Lectins, C-Type/chemistry , Lectins, C-Type/metabolism , Fish Proteins/chemistry , Fish Proteins/metabolism , Animals , Vibrio/physiology , Vibrio Infections/immunology , Vibrio Infections/metabolism , Vibrio Infections/veterinary , Fish Diseases/immunology , Fish Diseases/metabolism , Cloning, Molecular , Amino Acid Sequence , Base Sequence , Host-Pathogen Interactions , Immunity, Innate
11.
PLoS Pathog ; 18(1): e1010253, 2022 01.
Article in English | MEDLINE | ID: mdl-35073369

ABSTRACT

Flagellin is a key bacterial virulence factor that can stimulate molecular immune signaling in both animals and plants. The detailed mechanisms of recognizing flagellin and mounting an efficient immune response have been uncovered in vertebrates; however, whether invertebrates can discriminate flagellin remains largely unknown. In the present study, the homolog of human SHOC2 leucine rich repeat scaffold protein in kuruma shrimp (Marsupenaeus japonicus), designated MjShoc2, was found to interact with Vibrio anguillarum flagellin A (FlaA) using yeast two-hybrid and pull-down assays. MjShoc2 plays a role in antibacterial response by mediating the FlaA-induced expression of certain antibacterial effectors, including lectin and antimicrobial peptide. FlaA challenge, via MjShoc2, led to phosphorylation of extracellular regulated kinase (Erk), and the subsequent activation of signal transducer and activator of transcription (Stat), ultimately inducing the expression of effectors. Therefore, by establishing the FlaA/MjShoc2/Erk/Stat signaling axis, this study revealed a new antibacterial strategy in shrimp, and provides insights into the flagellin sensing mechanism in invertebrates.


Subject(s)
Arthropod Proteins/immunology , Flagellin/immunology , Intracellular Signaling Peptides and Proteins/immunology , Penaeidae/immunology , Vibrio Infections/immunology , Animals , MAP Kinase Signaling System/immunology , Penaeidae/microbiology , STAT Transcription Factors/immunology , Vibrio
12.
Dev Comp Immunol ; 129: 104348, 2022 04.
Article in English | MEDLINE | ID: mdl-35026231

ABSTRACT

Matrix metalloproteinases (MMPs) are highly expressed in leukocytes and macrophages, which play a role in the innate immune response. Here, the cDNA sequence of MMP25 from Japanese sea bass (Lateolabrax japonicus) (LjMMP25) was identified. Phylogenetic analysis revealed that LjMMP25 was most closely related to large yellow croaker MMP25. Multiple sequence alignment of LjMMP25 with MMP25 sequences from other teleosts revealed that regions of known functional importance were highly conserved. Expression analysis revealed that LjMMP25 was highly expressed in the head kidney and widely expressed in other tissues including gill, spleen, and liver. LjMMP25 was found to regulate inflammatory cytokine production and promote phagocytosis and bacterial killing in monocytes/macrophages (MO/MФ). Furthermore, LjMMP25 regulated the inflammatory response by modulating NF-κB signaling. These findings reveal new information about the role of LjMMP25 in regulating pro-inflammatory responses in this species.


Subject(s)
Bass/genetics , Amino Acid Sequence , Animals , Fish Diseases/immunology , Fish Proteins/genetics , GPI-Linked Proteins , Immunity, Innate/genetics , Leukocytes , Liver , Macrophages/immunology , Matrix Metalloproteinases, Membrane-Associated , Monocytes/immunology , Phagocytosis/immunology , Phylogeny , Sequence Alignment , Vibrio Infections/immunology
13.
Fish Shellfish Immunol ; 121: 437-445, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35065276

ABSTRACT

In recent years, the shrimp farming industry encountered significant economic losses induced by Vibrio alginolyticus. In this study, the influence of Vibrio alginolyticus on intestinal histomorphology and microbiome composition in Litopenaeus vannamei were studied. The results showed that the intestinal mucosal epithelial cells of Vibrio group (VA group) injected only with Vibrio alginolyticus showed large area exfoliation at 12 h, and the tissue morphology of intestine recovered at 48 h. Compared with the control group (CK group), the abundance of Proteobacteria was significantly higher (P < 0.05), while the abundance of Actinobacteria was significantly lower after infection with Vibrio alginolyticus. The abundance of Shewanella in intestinal microbiome of Litopenaeus vannamei was significantly higher at 12 h (P < 0.05), but the abundance of Candidatus_Bacilloplasma was significantly lower at 48 h after infection (P < 0.05). In VA group, the diversity of intestinal microbiome was significantly lower at 12 h, which could be caused by the proliferation of Candidatus_Bacilloplasma and Shewanella. All above findings suggested that the stability of the dynamic balance of microbiome in the intestine helped Litopenaeus vannamei to resist pathogen colonization.


Subject(s)
Gastrointestinal Microbiome , Intestines , Penaeidae , Vibrio Infections/veterinary , Vibrio alginolyticus , Animals , Immunity, Innate , Intestines/anatomy & histology , Intestines/microbiology , Penaeidae/anatomy & histology , Penaeidae/microbiology , Vibrio Infections/immunology
14.
Dev Comp Immunol ; 127: 104292, 2022 02.
Article in English | MEDLINE | ID: mdl-34656643

ABSTRACT

Vibrio harveyi is a zoonotic pathogen that can infect humans through wounds and cause severe inflammatory responses. Previous studies have reported that the Toll like receptors (TLR) mediated MAPK, AKT and NF-κB signaling pathways are involved in innate immune system resistance to pathogen invasion. However, the molecular mechanism of these pathways, as well as their involvement in V. harveyi infection remains elusive. This study established a V. harveyi infection model using murine peritoneal macrophages (PMs). Various techniques, including western blotting, ELISA, RT-qPCR, immunofluorescence, inhibition assays, were used to explore the roles of TLRs, MAPK, AKT and NF-κB signaling pathways in V. harveyi-induced inflammatory responses. ELISA assays showed that V. harveyi infection triggered proinflammatory cytokines secretion in PMs. RT-qPCR and inhibition assays showed that TLR2 participated in V. harveyi infection and up-regulated the proinflammatory cytokines secretion in murine PMs. Western blotting data showed that the phosphorylation of p38, JNK, AKT, and NF-κB p65 were significantly increased partly mediated by TLR2. In addition, immunofluorescence assays revealed that the NF-κB p65 translocated into nucleus in response to V. harveyi infection. The secretion of IL-1ß, IL-6, IL-12, and TNF-α were considerably reduced when the p38 MAPK and NF-κB signaling pathways were blocked, whereas blocking of AKT significantly increased the expression of IL-1ß, IL-6, IL-12, and TNF-α. These findings indicate that V. harveyi infection induces inflammatory responses in murine PMs via activation of p38 MAPK and NF-κB pathways, which are partly mediated by TLR2, but are inhibited by PI3K/AKT pathways.


Subject(s)
Cytokines , Macrophages, Peritoneal , NF-kappa B , Vibrio Infections , p38 Mitogen-Activated Protein Kinases , Animals , Cytokines/immunology , Macrophages, Peritoneal/immunology , Macrophages, Peritoneal/microbiology , Mice , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Vibrio , Vibrio Infections/immunology , p38 Mitogen-Activated Protein Kinases/metabolism
15.
Gene ; 809: 146032, 2022 Jan 30.
Article in English | MEDLINE | ID: mdl-34673208

ABSTRACT

Gap junction (GJ), a special intercellular junction between different cell types, directly connects the cytoplasm of adjacent cells, allows various molecules, ions and electrical impulses to pass through the intercellular regulatory gate, and plays vital roles in response to bacterial infection. Up to date, the information about the GJ in turbot (Scophthalmus maximus L.) is still limited. In current study, 43 gap junction genes were identified in turbot, phylogeny analysis suggested that gap junctions from turbot and other species were clustered into six groups, GJA, GJB, GJC, GJD, GJE and PANX, and turbot GJs together with respective GJs from Japanese flounder, half-smooth tongue sole and large yellow croaker, sharing same ancestors. In addition, these 43 GJ genes distributed in different chromosomes unevenly. According to gene structure and domain analysis, these genes (in GJA-GJE group) were highly conserved in that most of them contain the transmembrane area, connexin domain (CNX) and cysteine-rich domain (connexin CCC), while PANXs contain Pfam Innexin. Although only one tandem duplication was identified in turbot gap junction gene, 235 pairs of segmental duplications were identified in the turbot genome. To further investigate their evolutionary relationships, Ka/Ks was calculated, and results showed that most ratios were lower than 1, indicating they had undergone negative selection. Finally, expression analysis showed that gap junction genes were widely distributed in turbot tissues and significantly regulated after Vibrio anguillarum infection. Taken together, our research could provide valuable information for further exploration of the function of gap junction genes in teleost.


Subject(s)
Connexins/genetics , Fish Diseases/genetics , Fish Proteins/genetics , Flatfishes/genetics , Vibrio Infections/veterinary , Animals , Chromosome Mapping , Evolution, Molecular , Fish Diseases/immunology , Fish Proteins/immunology , Flatfishes/immunology , Flatfishes/microbiology , Gene Duplication , Gene Expression Regulation , Genome-Wide Association Study , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Phylogeny , Vibrio/pathogenicity , Vibrio Infections/immunology
16.
J Immunol Methods ; 501: 113208, 2022 02.
Article in English | MEDLINE | ID: mdl-34933017

ABSTRACT

The indirect enzyme-linked immunosorbent assay (ELISA) is the gold standard method for monoclonal antibody (McAb) detection and plays a unique role in the preparation of bacterial antibodies. To solve the laborious issues associated with indirect ELISA, a novel bacterial coloration immunofluorescence strip (BCIFS) for antibody detection using colored bacteria instead of a labeled antibody as the antigen and tracer simultaneously and goat anti-mouse IgG as the test line was developed. The affinity range survey of BCIFS indicated that hybridoma cell cultures of E. coli O157:H7 (D3, E7) and Vibrio parahemolyticus (H7, C9) were detected, which complied with the results of indirect ELISA. Compared with the traditional indirect ELISA, the BCIFS sensitivity for E7 cell cultures, ascites, and purified antibodies was at least 4-fold more sensitive, and the BCIFS cross-reactivity for E7 cell cultures was almost consistent with that of indirect ELISA. In addition, the BCIFS isotypes for E. coli O157:H7 cell cultures and Vibrio parahemolyticus were IgG2a and IgG1, respectively, which were identical to the indirect ELISA. Furthermore, the BCIFS method was confirmed by McAb preparation, effective antibody use, and targeted antibody-secreted hybridoma preparation and screening, which showed excellent performance and substitution of the indirect ELISA method. Combined with methylcellulose semisolid medium, BCIFS offers a novel, easy to operate, rapid preparation method for antigen-specific hybridomas. This is the first report using BCIFS instead of indirect ELISA for bacterial antibody detection and application in different samples, which demonstrates a rapid and powerful tool for antibody engineering.


Subject(s)
Antibodies, Bacterial/analysis , Enzyme-Linked Immunosorbent Assay , Escherichia coli Infections/diagnosis , Escherichia coli/immunology , Fluorescent Antibody Technique/instrumentation , Reagent Strips , Vibrio Infections/diagnosis , Vibrio parahaemolyticus/immunology , Yersinia enterocolitica/immunology , Animals , Antibody Specificity , Antigens, Bacterial/immunology , Bacterial Load , Escherichia coli Infections/immunology , Escherichia coli Infections/microbiology , Hybridomas , Mice, Inbred BALB C , Predictive Value of Tests , Reproducibility of Results , Vibrio Infections/immunology , Vibrio Infections/microbiology , Workflow
17.
Fish Shellfish Immunol ; 121: 446-455, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34655739

ABSTRACT

This study was conducted to investigate the effects of dietary supplementation of tussah immunoreactive substances (TIS) and antimicrobial peptides (AMPs) on microbial community and resistance against Vibrio splendidus of Yesso scallop Patinopecten yessoensis. Scallops were fed with the basal diets supplemented with TIS (T group), AMPs (A group), or both of the two (TA group). After the feeding trial, the microbial community changes were evaluated, and the challenge test with V. splendidus was conducted, as well as the immune parameters and digestive enzyme activities were determined. The results revealed that the TA group was more capable of modulating the bacterial community composition of scallops by increasing the potentially beneficial bacteria and suppressing the pathogenic microorganism during the feeding trial. After injection, the cumulative mortality rate in TA group was notably lower than others. In addition, the TA group showed better digestive and immune parameters involved in digestive capacity, phagocyte function, phosphatase-responsiveness, and oxidation resistance. These results collectively confirmed that dietary TIS and AMPs in diet could effectively modulate the microflora structure and improve disease resistance against V. splendidus of scallop, and the positive effects were more obvious when dietary supplementation of them in combination.


Subject(s)
Antimicrobial Peptides/administration & dosage , Diet , Disease Resistance , Microbiota , Pectinidae , Vibrio Infections/veterinary , Animals , Diet/veterinary , Pectinidae/immunology , Pectinidae/microbiology , Phylogeny , Vibrio , Vibrio Infections/immunology
18.
PLoS Pathog ; 17(12): e1010145, 2021 12.
Article in English | MEDLINE | ID: mdl-34898657

ABSTRACT

Many members of the nucleotide-binding and oligomerization domain (NACHT)- and leucine-rich-repeat-containing protein (NLR) family play crucial roles in pathogen recognition and innate immune response regulation. In our previous work, a unique and Vibrio splendidus-inducible NLRC4 receptor comprising Ig and NACHT domains was identified from the sea cucumber Apostichopus japonicus, and this receptor lacked the CARD and LRR domains that are typical of common cytoplasmic NLRs. To better understand the functional role of AjNLRC4, we confirmed that AjNLRC4 was a bona fide membrane PRR with two transmembrane structures. AjNLRC4 was able to directly bind microbes and polysaccharides via its extracellular Ig domain and agglutinate a variety of microbes in a Ca2+-dependent manner. Knockdown of AjNLRC4 by RNA interference and blockade of AjNLRC4 by antibodies in coelomocytes both could significantly inhibit the phagocytic activity and elimination of V. splendidus. Conversely, overexpression of AjNLRC4 enhanced the phagocytic activity of V. splendidus, and this effect could be specifically blocked by treatment with the actin-mediated endocytosis inhibitor cytochalasin D but not other endocytosis inhibitors. Moreover, AjNLRC4-mediated phagocytic activity was dependent on the interaction between the intracellular domain of AjNLRC4 and the ß-actin protein and further regulated the Arp2/3 complex to mediate the rearrangement of the cytoskeleton and the polymerization of F-actin. V. splendidus was found to be colocalized with lysosomes in coelomocytes, and the bacterial quantities were increased after injection of chloroquine, a lysosome inhibitor. Collectively, these results suggested that AjNLRC4 served as a novel membrane PRR in mediating coelomocyte phagocytosis and further clearing intracellular Vibrio through the AjNLRC4-ß-actin-Arp2/3 complex-lysosome pathway.


Subject(s)
Host-Pathogen Interactions/immunology , NLR Proteins/immunology , Phagocytosis/physiology , Stichopus/microbiology , Vibrio Infections/immunology , Actins/metabolism , Animals , Cytoskeleton/metabolism , NLR Proteins/metabolism , Polymerization , Stichopus/metabolism , Vibrio/immunology
19.
Front Immunol ; 12: 778098, 2021.
Article in English | MEDLINE | ID: mdl-34925352

ABSTRACT

The gut microbiota is a complex group of microorganisms that is not only closely related to intestinal immunity but also affects the whole immune system of the body. Antimicrobial peptides and reactive oxygen species participate in the regulation of gut microbiota homeostasis in invertebrates. However, it is unclear whether nitric oxide, as a key mediator of immunity that plays important roles in antipathogen activity and immune regulation, participates in the regulation of gut microbiota homeostasis. In this study, we identified a nitric oxide synthase responsible for NO production in the shrimp Marsupenaeus japonicus. The expression of Nos and the NO concentration in the gastrointestinal tract were increased significantly in shrimp orally infected with Vibrio anguillarum. After RNA interference of Nos or treatment with an inhibitor of NOS, L-NMMA, NO production decreased and the gut bacterial load increased significantly in shrimp. Treatment with the NO donor, sodium nitroprusside, increased the NO level and reduced the bacterial load significantly in the shrimp gastrointestinal tract. Mechanistically, V. anguillarum infection increased NO level via upregulation of NOS and induced phosphorylation of ERK. The activated ERK phosphorylated the NF-κB-like transcription factor, dorsal, and caused nuclear translocation of dorsal to increase expression of antimicrobial peptides (AMPs) responsible for bacterial clearance. In summary, as a signaling molecule, NOS-produced NO regulates intestinal microbiota homeostasis by promoting AMP expression against infected pathogens via the ERK-dorsal pathway in shrimp.


Subject(s)
Extracellular Signal-Regulated MAP Kinases/metabolism , Gastrointestinal Microbiome , Gastrointestinal Tract/microbiology , NF-kappa B/metabolism , Nitric Oxide Synthase/metabolism , Penaeidae/microbiology , Vibrio Infections/microbiology , Vibrio/pathogenicity , Animals , Antimicrobial Peptides/metabolism , Bacterial Load , Gastrointestinal Tract/enzymology , Gastrointestinal Tract/immunology , Homeostasis , Nitric Oxide/metabolism , Penaeidae/enzymology , Penaeidae/immunology , Phosphorylation , Signal Transduction , Vibrio/immunology , Vibrio Infections/enzymology , Vibrio Infections/immunology
20.
Front Immunol ; 12: 792040, 2021.
Article in English | MEDLINE | ID: mdl-34868083

ABSTRACT

Long non-coding RNAs (lncRNAs) have been reported to play critical roles during pathogen infection and innate immune response in mammals. Such observation inspired us to explore the expression profiles and functions of lncRNAs in invertebrates upon bacterial infection. Here, the lncRNAs of sea cucumber (Apostichopus japonicus) involved in Vibrio splendidus infection were characterized. RNA-seq obtained 2897 differentially expressed lncRNAs from Vibrio splendidus infected coelomocytes of sea cucumbers. The potential functions of the significant differentially expressed lncRNAs were related to immunity and metabolic process based on the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Moreover, we identify a lncRNA (XLOC_028509), which is downregulated with Vibrio splendidus challenged, further study indicated that XLOC_028509 adsorb miR-2008 and miR-31 as competing endogenous RNAs (ceRNAs) through base complementarity, which in turn decreased the amount of miRNAs (microRNAs) bound to the 3'UTRs (untranslated regions) of mRNAs to reduce their inhibition of target gene translation. These data demonstrated that the lncRNAs of invertebrates might be important regulators in pathogen-host interactions by sponging miRNAs.


Subject(s)
MicroRNAs/genetics , RNA, Long Noncoding/genetics , Sea Cucumbers/immunology , Vibrio Infections/immunology , Vibrio/physiology , Animals , Gene Ontology , Host-Pathogen Interactions , Immunity, Innate/genetics , Protein Biosynthesis , Sea Cucumbers/genetics , Vibrio Infections/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...